队列是一种只允许在一端进行插入操作,而在另一端进行删除操作的线性表。
在Python文档中搜索队列(queue)会发现,Python标准库中包含了四种队列,分别是queue.Queue / asyncio.Queue / multiprocessing.Queue / collections.deque。
collections.deque
deque是双端队列(double-ended queue)的缩写,由于两端都能编辑,deque既可以用来实现栈(stack)也可以用来实现队列(queue)。
deque支持丰富的操作方法,主要方法如图:
相比于list实现的队列,deque实现拥有更低的时间和空间复杂度。list实现在出队(pop)和插入(insert)时的空间复杂度大约为O(n),deque在出队(pop)和入队(append)时的时间复杂度是O(1)。
deque也支持in操作符,可以使用如下写法:
q = collections.deque([1, 2, 3, 4])
print(5 in q) # False
print(1 in q) # True
deque还封装了顺逆时针的旋转的方法:rotate。
# 顺时针
q = collections.deque([1, 2, 3, 4])
q.rotate(1)
print(q) # [4, 1, 2, 3]
q.rotate(1)
print(q) # [3, 4, 1, 2]# 逆时针
q = collections.deque([1, 2, 3, 4])
q.rotate(-1)
print(q) # [2, 3, 4, 1]
q.rotate(-1)
print(q) # [3, 4, 1, 2]
线程安全方面,通过查看collections.deque中的append()、pop()等方法的源码可以知道,他们都是原子操作,所以是GIL保护下的线程安全方法。
static PyObject *
deque_append(dequeobject *deque, PyObject *item) {
Py_INCREF(item);
if (deque_append_internal(deque, item, deque->maxlen) < 0)
return NULL;
Py_RETURN_NONE;
}
通过dis方法可以看到,append是原子操作(一行字节码)。
综上,collections.deque是一个可以方便实现队列的数据结构,具有线程安全的特性,并且有很高的性能。
queue.Queue & asyncio.Queue
queue.Queue和asyncio.Queue都是支持多生产者、多消费者的队列,基于collections.deque,他们都提供了Queue(FIFO队列)、PriorityQueue(优先级队列)、LifoQueue(LIFO队列),接口方面也相同。
区别在于queue.Queue适用于多线程的场景,asyncio.Queue适用于协程场景下的通信,由于asyncio的加成,queue.Queue下的阻塞接口在asyncio.Queue中则是以返回协程对象的方式执行,具体差异如下表:
queue.Queue
asyncio.Queue
介绍
同步队列
asyncio队列
线程安全
是
否
超时机制
通过timeout参数实现
通过asyncio.wait_for()方法实现
qsize()
预估的队列长度(获取qsize到下一个操作之间,queue有可能被其它的线程修改,导致qsize大小发生变化)
准确的队列长度(由于是单线程,所以queue不会被其它线程修改)
put() / set()
put(item, block=True, timeout=None),可以通过设置block是否为True来配置put和set方法是否为阻塞,并且可以为阻塞操作设置最大时长timeout,block为False时行为和put_nowait()方法一致。
put()方法会返回一个协程对象,所以没有block参数和timeout参数,如果需要非阻塞方法,可以使用put_nowait(),如果需要对阻塞方法应用超时,可以使用coroutine asyncio.wait_for()。
multiprocessing.Queue
multiprocessing提供了三种队列,分别是Queue、SimpleQueue、JoinableQueue。
multiprocessing.Queue既是线程安全也是进程安全的,相当于queue.Queue的多进程克隆版。和threading.Queue很像,multiprocessing.Queue支持put和get操作,底层结构是multiprocessing.Pipe。
multiprocessing.Queue底层是基于Pipe构建的,但是数据传递时并不是直接写入Pipe,而是写入进程本地buffer,通过一个feeder线程写入底层Pipe,这样做是为了实现超时控制和非阻塞put/get,所以Queue提供了join_thread、cancel_join_thread、close函数来控制feeder的行为,close函数用来关闭feeder线程、join_thread用来join feeder线程,cancel_join_thread用来在控制在进程退出时,不自动join feeder线程,使用cancel_join_thread有可能导致部分数据没有被feeder写入Pipe而导致的数据丢失。
和threading.Queue不同的是,multiprocessing.Queue默认不支持join()和task_done操作,这两个支持需要使用mp.JoinableQueue对象。
SimpleQueue是一个简化的队列,去掉了Queue中的buffer,没有了使用Queue可能出现的问题,但是put和get方法都是阻塞的并且没有超时控制。
总结
通过对比可以发现,上述四种结构都实现了队列,但是用处却各有偏重,collections.deque在数据结构层面实现了队列,但是并没有应用场景方面的支持,可以看做是一个基础的数据结构。queue模块实现了面向多生产线程、多消费线程的队列,asyncio.queue模块则实现了面向多生产协程、多消费协程的队列,而multiprocessing.queue模块实现了面向多成产进程、多消费进程的队列。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]