我就废话不多说了,大家还是直接看代码吧~

</pre><pre code_snippet_id="1947416" snippet_file_name="blog_20161025_1_3331239" name="code" class="python">

# coding:utf-8
"""
If you want to load pre-trained weights that include convolutions (layers Convolution2D or Convolution1D),
be mindful of this: Theano and TensorFlow implement convolution in different ways (TensorFlow actually implements correlation, much like Caffe),
and thus, convolution kernels trained with Theano (resp. TensorFlow) need to be converted before being with TensorFlow (resp. Theano).
"""
from keras import backend as K
from keras.utils.np_utils import convert_kernel
from text_classifier import keras_text_classifier
import sys
 
def th2tf( model):
  import tensorflow as tf
  ops = []
  for layer in model.layers:
    if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      ops.append(tf.assign(layer.W, converted_w).op)
  K.get_session().run(ops)
  return model
 
def tf2th(model):
  for layer in model.layers:
    if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      K.set_value(layer.W, converted_w)
  return model
 
def conv_layer_converted(tf_weights, th_weights, m = 0):
  """
  :param tf_weights:
  :param th_weights:
  :param m: 0-tf2th, 1-th2tf
  :return:
  """
  if m == 0: # tf2th
    tc = keras_text_classifier(weights_path=tf_weights)
    model = tc.loadmodel()
    model = tf2th(model)
    model.save_weights(th_weights)
  elif m == 1: # th2tf
    tc = keras_text_classifier(weights_path=th_weights)
    model = tc.loadmodel()
    model = th2tf(model)
    model.save_weights(tf_weights)
  else:
    print("0-tf2th, 1-th2tf")
    return
if __name__ == '__main__':
  if len(sys.argv) < 4:
    print("python tf_weights th_weights <0|1>\n0-tensorflow to theano\n1-theano to tensorflow")
    sys.exit(0)
  tf_weights = sys.argv[1]
  th_weights = sys.argv[2]
  m = int(sys.argv[3])
  conv_layer_converted(tf_weights, th_weights, m)

补充知识:keras学习之修改底层为TensorFlow还是theano

我们知道,keras的底层是TensorFlow或者theano

要知道我们是用的哪个为底层,只需要import keras即可显示

修改方法:

打开

keras实现theano和tensorflow训练的模型相互转换

修改

keras实现theano和tensorflow训练的模型相互转换

以上这篇keras实现theano和tensorflow训练的模型相互转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,theano,tensorflow,训练模型,相互转换

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。