实时画图

import matplotlib.pyplot as plt

ax = []   # 定义一个 x 轴的空列表用来接收动态的数据
ay = []   # 定义一个 y 轴的空列表用来接收动态的数据
plt.ion()   # 开启一个画图的窗口
for i in range(100): # 遍历0-99的值
 ax.append(i)  # 添加 i 到 x 轴的数据中
 ay.append(i**2) # 添加 i 的平方到 y 轴的数据中
 plt.clf()  # 清除之前画的图
 plt.plot(ax,ay) # 画出当前 ax 列表和 ay 列表中的值的图形
 plt.pause(0.1)  # 暂停一秒
 plt.ioff()  # 关闭画图的窗口

实时画图 效果图

Python matplotlib实时画图案例

补充知识:Python 绘图与可视化 matplotlib 动态条形图 bar

第一种办法

一种方法是每次都重新画,包括清除figure

def animate(fi):
 bars=[]
 if len(frames)>fi:
  # axs.text(0.1,0.90,time_template%(time.time()-start_time),transform=axs.transAxes)#所以这样
  time_text.set_text(time_template%(0.1*fi))#这个必须没有axs.cla()才行
  # axs.cla()
  axs.set_title('bubble_sort_visualization')
  axs.set_xticks([])
  axs.set_yticks([])
  bars=axs.bar(list(range(Data.data_count)),#个数
    [d.value for d in frames[fi]],#数据
    1,    #宽度
    color=[d.color for d in frames[fi]]#颜色
    ).get_children()
 return bars
 anim=animation.FuncAnimation(fig,animate,frames=len(frames), interval=frame_interval,repeat=False)

这样效率很低,而且也有一些不可取的弊端,比如每次都需要重新设置xticks、假如figure上添加的有其他东西,这些东西也一并被clear了,还需要重新添加,比如text,或者labale。

第二种办法

可以像平时画线更新data那样来更新bar的高

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation
 
 
fig=plt.figure(1,figsize=(4,3))
ax=fig.add_subplot(111)
ax.set_title('bar_animate_test')
#ax.set_xticks([])注释了这个是能看到变化,要不看不到变化,不对,能看到变化,去了注释吧
#ax.set_yticks([])
ax.set_xlabel('xlable')
N=5
frames=50
x=np.arange(1,N+1)
 
collection=[]
collection.append([i for i in x])
for i in range(frames):
 collection.append([ci+1 for ci in collection[i]])
print(collection)
xstd=[0,1,2,3,4]
bars=ax.bar(x,collection[0],0.30)
def animate(fi):
 # collection=[i+1 for i in x]
   ax.set_ylim(0,max(collection[fi])+3)#对于问题3,添加了这个
 for rect ,yi in zip(bars,collection[fi]):
 rect.set_height(yi)
 # bars.set_height(collection)
 return bars
anim=animation.FuncAnimation(fig,animate,frames=frames,interval=10,repeat=False)
plt.show()

问题

*)TypeError: ‘numpy.int32' object is not iterable

x=np.arange(1,N+1)<br>collection=[i for i in x]
#collection=[i for i in list(x)]#错误的认为是dtype的原因,将这里改成了list(x)
for i in range(frames):
 collection.append([ci+1 for ci in collection[i]])#问题的原因是因为此时的collection还是一个一位数组,所以这个collection[i]是一个x里的一个数,并不是一个列表,我竟然还以为的dtype的原因,又改了
xstd=[0,1,2,3,4]

应该是

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
collection=[]
collection.append([i for i in x])#成为二维数组
for i in range(frames):
 collection.append([ci+1 for ci in collection[i]])

然后又出现了下面的问题:

*)TypeError: only size-1 arrays can be converted to Python scalars

Traceback (most recent call last):
 File "forTest.py", line 22, in <module>
 bars=ax.bar(x,collection,0.30)
 File "C:\Users\Administrator.SC-201605202132\Envs\sort\lib\site-packages\matplotlib\__init__.py", line 1589, in inner
 return func(ax, *map(sanitize_sequence, args), **kwargs)
 File "C:\Users\Administrator.SC-201605202132\Envs\sort\lib\site-packages\matplotlib\axes\_axes.py", line 2430, in bar
 label='_nolegend_',
 File "C:\Users\Administrator.SC-201605202132\Envs\sort\lib\site-packages\matplotlib\patches.py", line 707, in __init__
 Patch.__init__(self, **kwargs)
 File "C:\Users\Administrator.SC-201605202132\Envs\sort\lib\site-packages\matplotlib\patches.py", line 89, in __init__
 self.set_linewidth(linewidth)
 File "C:\Users\Administrator.SC-201605202132\Envs\sort\lib\site-packages\matplotlib\patches.py", line 368, in set_linewidth
 self._linewidth = float(w)
TypeError: only size-1 arrays can be converted to Python scalars

应该是传递的参数错误,仔细想了一下,在报错的代码行中,collection原来是没错的,因为原来是一维数组,现在变成二维了,改为

bars=ax.bar(x,collection[0],0.30)

好了

*)出现的问题,在上面的代码中,运行的时候不会画布的大小不会变,会又条形图溢出的情况,在animate()中添加了

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
def animate(fi):
 # collection=[i+1 for i in x]
 ax.set_ylim(0,max(collection[fi])+3)#添加了这个
 for rect ,yi in zip(bars,collection[fi]):
 rect.set_height(yi)
 
 # bars.set_height(collection)
 return bars

别的属性

*)条形图是怎样控制间隔的:

是通过控制宽度

width=1,#没有间隔,每个条形图会紧挨着

*)errorbar:

是加一个横线,能通过xerr和yerr来调整方向

Python matplotlib实时画图案例

xstd=[0,1,2,3,4]
bars=ax.bar(x,collection,0.30,xerr=xstd)

以上这篇Python matplotlib实时画图案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Python,matplotlib,实时画图

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“Python matplotlib实时画图案例”

暂无“Python matplotlib实时画图案例”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?