在写一些很小的机器学习项目的时候,我们往往希望training, testing和inference能共用一个入口main,但是不同的功能使用不同的input参数.当然如果三个功能对应三个.py脚本问题也不大,但是毕竟觉得不太优雅.这个时候就需要考虑如何让代码更加简单有条理.

主要是最近在看parser有关的东西,所以看到了一个项目,里面的使用subparser的地方是值得借鉴的,下面附上代码和部分自己的一些见解

def main():
 parser = argparse.ArgumentParser()
 subparsers = parser.add_subparsers()

 hparams = make_hparams() 
 # 这个函数是直接写了一些超参数,讲真我不太喜欢这个操作,个人还是比较倾向用一个额外的config文件来存储
 # 这些超参,这样输入的只要是config文件的路径即可;主要是这么做可以看到自己每一步的参数是怎么设置的
 # 便于后期出现了问题来排错
 subparser = subparsers.add_parser("train")
 # add subparser here
 subparser.set_defaults(callback=lambda args: run_train(args, hparams))
 # 加上callback选项,run_train是前期定义的一个函数,这条和后面的args.callback(args)对应
 hparams.populate_arguments(subparser) 
 # 这里就是作者自己定义的一个函数,本质其实还是一系列的add_argument
 subparser.add_argument("--numpy-seed", type=int)
 subparser.add_argument("--model-path-base", required=True)
 subparser.add_argument("--evalb-dir", default="EVALB/")
 subparser.add_argument("--train-path", default="data/02-21.10way.clean")
 subparser.add_argument("--dev-path", default="data/22.auto.clean")
 subparser.add_argument("--batch-size", type=int, default=250)
 subparser.add_argument("--subbatch-max-tokens", type=int, default=2000)
 subparser.add_argument("--eval-batch-size", type=int, default=100)
 subparser.add_argument("--epochs", type=int)
 subparser.add_argument("--checks-per-epoch", type=int, default=4)
 subparser.add_argument("--print-vocabs", action="store_true")

 subparser = subparsers.add_parser("test")
 subparser.set_defaults(callback=run_test)
 subparser.add_argument("--model-path-base", required=True)
 subparser.add_argument("--evalb-dir", default="EVALB/")
 subparser.add_argument("--test-path", default="data/23.auto.clean")
 subparser.add_argument("--test-path-raw", type=str)
 subparser.add_argument("--eval-batch-size", type=int, default=100)

 subparser = subparsers.add_parser("ensemble")
 subparser.set_defaults(callback=run_ensemble)
 subparser.add_argument("--model-path-base", nargs='+', required=True)
 subparser.add_argument("--evalb-dir", default="EVALB/")
 subparser.add_argument("--test-path", default="data/22.auto.clean")
 subparser.add_argument("--eval-batch-size", type=int, default=100)

 subparser = subparsers.add_parser("parse")
 subparser.set_defaults(callback=run_parse)
 subparser.add_argument("--model-path-base", required=True)
 subparser.add_argument("--input-path", type=str, required=True)
 subparser.add_argument("--output-path", type=str, default="-")
 subparser.add_argument("--eval-batch-size", type=int, default=100)

 subparser = subparsers.add_parser("viz")
 subparser.set_defaults(callback=run_viz)
 subparser.add_argument("--model-path-base", required=True)
 subparser.add_argument("--evalb-dir", default="EVALB/")
 subparser.add_argument("--viz-path", default="data/22.auto.clean")
 subparser.add_argument("--eval-batch-size", type=int, default=100)

 args = parser.parse_args()
 args.callback(args)

补充知识:python 学习笔记--argparse模块以及parse_known_args()函数

代码test.py:

import argparse
import sys

parse=argparse.ArgumentParser()
parse.add_argument("--learning_rate",type=float,default=0.01,help="initial learining rate")
parse.add_argument("--max_steps",type=int,default=2000,help="max")
parse.add_argument("--hidden1",type=int,default=100,help="hidden1")
flags,unparsed=parse.parse_known_args(sys.argv[1:])
print flags.learning_rate
print flags.max_steps
print flags.hidden1
print unparsed

运行

python test.py --learning_rate 20 --max_steps 10 --hidden1 100 --arg_int 2

其效果等同于

python test.py --learning_rate=20 --max_steps=10 --hidden1=100 --arg_int=2

输出:

20.0
10
100

['--arg_int', '2']

flags为namespace空间,结果是Namespace(hidden1=100, learning_rate=20.0, max_steps=10),包含程序定义了的命令行参数,而unparsed为程序没有定义的命令行参数。

以上这篇Python ArgumentParse的subparser用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Python,ArgumentParse,subparser

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“Python ArgumentParse的subparser用法说明”

暂无“Python ArgumentParse的subparser用法说明”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?