废话不多说,来看看实例吧!

# -*- coding: utf-8 -*-
import serial 
 
filename='yjy.txt' 
t = serial.Serial('COM5',57600)
b=t.read(3)
vaul=[]
i=0
y=0
p=0
while b[0]!=170 or b[1]!=170 or b[2]!=4:
 b=t.read(3)
 print(b)
if b[0]==b[1]==170 and b[2]==4:
 a=b+t.read(5)
 print(a)
 if a[0] == 170 and a[1]==170 and a[2]==4 and a[3]==128 and a[4]==2: 
 while 1:
  i=i+1
#  print(i)
  a=t.read(8)
#  print(a)
  sum=((0x80+0x02+a[5]+a[6])^0xffffffff)&0xff
  if a[0]==a[1]==170 and a[2]==32:
  y=1
  else:
  y=0
  if a[0] == 170 and a[1]==170 and a[2]==4 and a[3]==128 and a[4]==2:
  p=1
  else:
  p=0
  if sum!=a[7] and y!=1 and p!=1:
   print("wrroy1")
   b=t.read(3)
   c=b[0]
   d=b[1]
   e=b[2]
   print(b)
   while c!=170 or d!=170 or e!=4:
   c=d
   d=e
   e=t.read()
   print("c:")
   print(c)
   print("d:")
   print(d)
   print("e:")
   print(e)
   if c==(b'\xaa'or 170) and d==(b'\xaa'or 170) and e==b'\x04':
    g=t.read(5)
    print(g)
    if c == b'\xaa' and d==b'\xaa' and e==b'\x04' and g[0]==128 and g[1]==2: 
    a=t.read(8)
    print(a)
    break
   
#  if a[0]==a[1]==170 and a[2]==4:
  # print(type(a))
  
  if a[0] == 170 and a[1]==170 and a[2]==4 and a[3]==128 and a[4]==2:
  high=a[5]
  low=a[6]
#  print(a)
  rawdata=(high<<8)|low 
  if rawdata>32768:
   rawdata=rawdata-65536
#  vaul.append(rawdata)
  sum=((0x80+0x02+high+low)^0xffffffff)&0xff
  if sum==a[7]:
   vaul.append(rawdata)
  if sum!=a[7]:
   print("wrroy2")
   b=t.read(3)
   c=b[0]
   d=b[1]
   e=b[2]
#   print(b)
   while c!=170 or d!=170 or e!=4:
   c=d
   d=e
   e=t.read()
   if c==b'\xaa' and d==b'\xaa' and e==b'\x04':
    g=t.read(5)
    print(g)
    if c == b'\xaa' and d==b'\xaa' and e==b'\x04' and g[0]==128 and g[1]==2: 
    a=t.read(8)
    print(a)
    break
  if a[0]==a[1]==170 and a[2]==32:
  c=a+t.read(28)
  print(vaul)
  print(len(vaul))
  for v in vaul:
   w=0
   if v<=102:
   w+=v
   q=w/len(vaul)
   q=str(q)
   with open(filename,'a') as file_object:
    file_object.write(q)
    file_object.write("\n")
   if 102<v<=204:
   w+=v
   q=w/len(vaul)
   q=str(q)
   with open(filename,'a') as file_object:
    file_object.write(q)
    file_object.write("\n")
   if 204<v<=306:
   w+=v
   q=w/len(vaul)
   q=str(q)
   with open(filename,'a') as file_object:
    file_object.write(q)
    file_object.write("\n")
   if 306<v<=408:
   w+=v
   q=w/len(vaul)
   q=str(q)
   with open(filename,'a') as file_object:
    file_object.write(q)
    file_object.write("\n")
   if 408<v<=510:
   w+=v
   q=w/len(vaul)
   q=str(q)
   with open(filename,'a') as file_object:
    file_object.write(q)
    file_object.write("\n")
#  print(c)
  vaul=[]
#  if i==250:
#  break
#  with open(filename,'a') as file_object:
#   file_object.write(q)
#   file_object.write("\n")

补充知识:Python处理脑电数据:PCA数据降维

pca.py

#!-coding:UTF-8-
from numpy import *
import numpy as np

def loadDataSet(fileName, delim='\t'):
 fr = open(fileName)
 stringArr = [line.strip().split(delim) for line in fr.readlines()]
 datArr = [map(float,line) for line in stringArr]
 return mat(datArr)

def percentage2n(eigVals,percentage):
 sortArray=np.sort(eigVals) #升序
 sortArray=sortArray[-1::-1] #逆转,即降序
 arraySum=sum(sortArray)
 tmpSum=0
 num=0
 for i in sortArray:
 tmpSum+=i
 num+=1
 if tmpSum>=arraySum*percentage:
  return num

def pca(dataMat, topNfeat=9999999):
 meanVals = mean(dataMat, axis=0)
 meanRemoved = dataMat - meanVals #remove mean
 covMat = cov(meanRemoved, rowvar=0)
 eigVals,eigVects = linalg.eig(mat(covMat))
 eigValInd = argsort(eigVals)  #sort, sort goes smallest to largest
 eigValInd = eigValInd[:-(topNfeat+1):-1] #cut off unwanted dimensions
 redEigVects = eigVects[:,eigValInd] #reorganize eig vects largest to smallest
 lowData_N = meanRemoved * redEigVects#transform data into new dimensions
 reconMat_N = (lowData_N * redEigVects.T) + meanVals
 return lowData_N,reconMat_N

def pcaPerc(dataMat, percentage=1):
 meanVals = mean(dataMat, axis=0)
 meanRemoved = dataMat - meanVals #remove mean
 covMat = cov(meanRemoved, rowvar=0)
 eigVals,eigVects = linalg.eig(mat(covMat))
 eigValInd = argsort(eigVals)  #sort, sort goes smallest to largest
 n=percentage2n(eigVals,percentage)
 n_eigValIndice=eigValInd[-1:-(n+1):-1]
 n_eigVect=eigVects[:,n_eigValIndice]
 lowData_P=meanRemoved*n_eigVect
 reconMat_P = (lowData_P * n_eigVect.T) + meanVals
 return lowData_P,reconMat_P

readData.py

import matplotlib.pyplot as plt
from pylab import *
import numpy as np
import scipy.io as sio
def loadData(filename,mName):
 load_fn = filename
 load_data = sio.loadmat(load_fn)
 load_matrix = load_data[mName]
 #load_matrix_row = load_matrix[0]

 #figure(mName)
 #plot(load_matrix,'r-')
 #show()

 #print type(load_data)
 #print type(load_matrix)
 #print load_matrix_row
 return load_matrix

main.py

#!-coding:UTF-8
import matplotlib.pyplot as plt
from pylab import *
import numpy as np
import scipy.io as sio
import pca
from numpy import mat,matrix
import scipy as sp
import readData
import pca

if __name__ == '__main__':
 A1=readData.loadData('6electrodes.mat','A1')
 lowData_N, reconMat_N= pca.pca(A1,30)
 lowData_P, reconMat_P = pca.pcaPerc(A1,0.95)
 #print lowDMat
 #print reconMat
 print shape(lowData_N)
 print shape(reconMat_N)
 print shape(lowData_P)
 print shape(reconMat_P)

以上这篇使用python接受tgam的脑波数据实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,tgam,脑波数据

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“使用python接受tgam的脑波数据实例”

暂无“使用python接受tgam的脑波数据实例”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?