基于pytorch来讲

MSELoss()多用于回归问题,也可以用于one_hotted编码形式,

CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式

MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型

CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型

(1)CrossEntropyLoss() 举例说明:

比如二分类问题,最后一层输出的为2个值,比如下面的代码:

class CNN (nn.Module ) :
  def __init__ ( self , hidden_size1 , output_size , dropout_p) :
    super ( CNN , self ).__init__ ( )
    self.hidden_size1 = hidden_size1
    self.output_size = output_size
    self.dropout_p = dropout_p
    
    self.conv1 = nn.Conv1d ( 1,8,3,padding =1) 
    self.fc1 = nn.Linear (8*500, self.hidden_size1 )
    self.out = nn.Linear (self.hidden_size1,self.output_size ) 
 
  
  def forward ( self , encoder_outputs ) :
    cnn_out = F.max_pool1d ( F.relu (self.conv1(encoder_outputs)),2) 
    cnn_out = F.dropout ( cnn_out ,self.dropout_p) #加一个dropout
    cnn_out = cnn_out.view (-1,8*500) 
    output_1 = torch.tanh ( self.fc1 ( cnn_out ) )
    output = self.out ( ouput_1)
    return output

最后的输出结果为:

基于MSELoss()与CrossEntropyLoss()的区别详解

上面一个tensor为output结果,下面为target,没有使用one_hotted编码。

训练过程如下:

cnn_optimizer = torch.optim.SGD(cnn.parameters(),learning_rate,momentum=0.9,              weight_decay=1e-5)
criterion = nn.CrossEntropyLoss()
 
def train ( input_variable , target_variable , cnn , cnn_optimizer , criterion ) :
  cnn_output = cnn( input_variable )
  print(cnn_output)
  print(target_variable)
  loss = criterion ( cnn_output , target_variable)
  cnn_optimizer.zero_grad ()
  loss.backward( )
  cnn_optimizer.step( )
  #print('loss: ',loss.item())
  return loss.item() #返回损失

说明CrossEntropyLoss()是output两位为one_hotted编码形式,但target不是one_hotted编码形式。

(2)MSELoss() 举例说明:

网络结构不变,但是标签是one_hotted编码形式。下面的图仅做说明,网络结构不太对,出来的预测也不太对。

基于MSELoss()与CrossEntropyLoss()的区别详解

如果target不是one_hotted编码形式会报错,报的错误如下。

基于MSELoss()与CrossEntropyLoss()的区别详解

目前自己理解的两者的区别,就是这样的,至于多分类问题是不是也是样的有待考察。

以上这篇基于MSELoss()与CrossEntropyLoss()的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
MSELoss,CrossEntropyLoss

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“基于MSELoss()与CrossEntropyLoss()的区别详解”

暂无“基于MSELoss()与CrossEntropyLoss()的区别详解”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。