1.简介
torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现
Variable和tensor的区别和联系
Variable是篮子,而tensor是鸡蛋,鸡蛋应该放在篮子里才能方便拿走(定义variable时一个参数就是tensor)
Variable这个篮子里除了装了tensor外还有requires_grad参数,表示是否需要对其求导,默认为False
Variable这个篮子呢,自身有一些属性
比如grad,梯度variable.grad是d(y)/d(variable)保存的是变量y对variable变量的梯度值,如果requires_grad参数为False,所以variable.grad返回值为None,如果为True,返回值就为对variable的梯度值
比如grad_fn,对于用户自己创建的变量(Variable())grad_fn是为none的,也就是不能调用backward函数,但对于由计算生成的变量,如果存在一个生成中间变量的requires_grad为true,那其的grad_fn不为none,反则为none
比如data,这个就很简单,这个属性就是装的鸡蛋(tensor)
Varibale包含三个属性:
data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致 grad_fn:指向Function对象,用于反向传播的梯度计算之用
代码1
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + temp + 2 y = y.mean() #求平均数 y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(x.grad) # d(y)/d(x)
输出1
none
(因为requires_grad=False)
代码2
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + temp + 2 y = y.mean() #求平均数 y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(temp.grad) # d(y)/d(temp)
输出2
tensor([[0.2500, 0.2500],
[0.2500, 0.2500]])
代码3
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + 2 y = y.mean() #求平均数 y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(x.grad) # d(y)/d(x)
输出3
Traceback (most recent call last):
File "path", line 12, in <module>
y.backward()
(报错了,因为生成变量y的中间变量只有x,而x的requires_grad是False,所以y的grad_fn是none)
代码4
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + 2 y = y.mean() #求平均数 #y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(y.grad_fn) # d(y)/d(x)
输出4
none
2.grad属性
在每次backward后,grad值是会累加的,所以利用BP算法,每次迭代是需要将grad清零的。
x.grad.data.zero_()
(in-place操作需要加上_,即zero_)
以上这篇Pytorch之Variable的用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Pytorch,Variable
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]