前言
之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛。可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试。
之后的代码都导入了:
from PIL import Image import matplotlib.pyplot as plt import numpy as np import torch import cv2
测试
使用PIL和cv2读取图片时会有细微的区别,通过下面的代码可以发现两者读取图片是有区别的,也就是使用PIL读取出来的图片转为numpy格式和直接使用cv读取的图片在像素点上并不是完全一致:
In[11]: image = cv2.imread('datasets/0_target.jpg') In[18]: image_pil = Image.open('datasets/0_target.jpg').convert('RGB') In[19]: image_pil = np.array(image_pil) In[20]: image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) In[21]: image_cv == image_pil Out[21]: array([[[ True, True, False], [ True, False, False], [False, False, False], ..., [ True, True, True], [ True, True, True], [ True, True, True]], [[ True, True, False], [ True, True, True], [False, True, False], ..., [ True, True, False], [ True, True, True], [ True, True, True]], [[ True, True, False], [ True, True, True], [False, False, False], ..., [ True, True, True], [ True, True, True], [ True, True, False]], ..., [[ True, True, True], [ True, True, True], [ True, True, True], ..., [False, False, True], [ True, True, True], [False, False, False]], [[ True, True, True], [ True, True, True], [ True, True, True], ..., [ True, True, True], [ True, True, True], [False, False, False]], [[ True, False, False], [ True, False, False], [ True, False, False], ..., [ True, True, True], [False, False, False], [ True, False, False]]]) In[26]: image_cv.shape Out[26]: (682, 700, 3) In[27]: image_pil.shape Out[27]: (682, 700, 3) In[28]: image_pil - image_cv Out[28]: array([[[ 0, 0, 1], [ 0, 255, 3], [255, 1, 2], ..., [ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0]], [[ 0, 0, 2], [ 0, 0, 0], [255, 0, 2], ..., [ 0, 0, 254], [ 0, 0, 0], [ 0, 0, 0]], [[ 0, 0, 2], [ 0, 0, 0], [255, 1, 2], ..., [ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 254]], ..., [[ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0], ..., [254, 1, 0], [ 0, 0, 0], [ 1, 255, 3]], [[ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0], ..., [ 0, 0, 0], [ 0, 0, 0], [ 2, 254, 4]], [[ 0, 1, 253], [ 0, 1, 253], [ 0, 1, 255], ..., [ 0, 0, 0], [ 1, 254, 1], [ 0, 255, 2]]], dtype=uint8)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“详解Python Opencv和PIL读取图像文件的差别”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月05日
2025年01月05日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]