1、es的批量插入
这是为了方便后期配置的更改,把配置信息放在logging.conf中
用elasticsearch来实现批量操作,先安装依赖包,sudo pip install Elasticsearch2
from elasticsearch import Elasticsearch
class ImportEsData:
logging.config.fileConfig("logging.conf")
logger = logging.getLogger("msg")
def __init__(self,hosts,index,type):
self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000)
self.index = index
self.type = type
def set_date(self,data):
# 批量处理
# es.index(index="test-index",doc_type="test-type",id=42,body={"any":"data","timestamp":datetime.now()})
self.es.index(index=self.index,doc_type=self.index,body=data)
2、使用pykafka消费kafka
1.因为kafka是0.8,pykafka不支持zk,只能用get_simple_consumer来实现
2.为了实现多个应用同时消费而且不重消费,所以一个应用消费一个partition
3. 为是确保消费数据量在不满足10000这个批量值,能在一个时间范围内插入到es中,这里设置consumer_timeout_ms一个超时等待时间,退出等待消费阻塞。
4.退出等待消费阻塞后导致无法再消费数据,因此在获取self.consumer 的外层加入了while True 一个死循环
#!/usr/bin/python
# -*- coding: UTF-8 -*-
from pykafka import KafkaClient
import logging
import logging.config
from ConfigUtil import ConfigUtil
import datetime
class KafkaPython:
logging.config.fileConfig("logging.conf")
logger = logging.getLogger("msg")
logger_data = logging.getLogger("data")
def __init__(self):
self.server = ConfigUtil().get("kafka","kafka_server")
self.topic = ConfigUtil().get("kafka","topic")
self.group = ConfigUtil().get("kafka","group")
self.partition_id = int(ConfigUtil().get("kafka","partition"))
self.consumer_timeout_ms = int(ConfigUtil().get("kafka","consumer_timeout_ms"))
self.consumer = None
self.hosts = ConfigUtil().get("es","hosts")
self.index_name = ConfigUtil().get("es","index_name")
self.type_name = ConfigUtil().get("es","type_name")
def getConnect(self):
client = KafkaClient(self.server)
topic = client.topics[self.topic]
p = topic.partitions
ps={p.get(self.partition_id)}
self.consumer = topic.get_simple_consumer(
consumer_group=self.group,
auto_commit_enable=True,
consumer_timeout_ms=self.consumer_timeout_ms,
# num_consumer_fetchers=1,
# consumer_id='test1',
partitions=ps
)
self.starttime = datetime.datetime.now()
def beginConsumer(self):
print("beginConsumer kafka-python")
imprtEsData = ImportEsData(self.hosts,self.index_name,self.type_name)
#创建ACTIONS
count = 0
ACTIONS = []
while True:
endtime = datetime.datetime.now()
print (endtime - self.starttime).seconds
for message in self.consumer:
if message is not None:
try:
count = count + 1
# print(str(message.partition.id)+","+str(message.offset)+","+str(count))
# self.logger.info(str(message.partition.id)+","+str(message.offset)+","+str(count))
action = {
"_index": self.index_name,
"_type": self.type_name,
"_source": message.value
}
ACTIONS.append(action)
if len(ACTIONS) >= 10000:
imprtEsData.set_date(ACTIONS)
ACTIONS = []
self.consumer.commit_offsets()
endtime = datetime.datetime.now()
print (endtime - self.starttime).seconds
#break
except (Exception) as e:
# self.consumer.commit_offsets()
print(e)
self.logger.error(e)
self.logger.error(str(message.partition.id)+","+str(message.offset)+","+message.value+"\n")
# self.logger_data.error(message.value+"\n")
# self.consumer.commit_offsets()
if len(ACTIONS) > 0:
self.logger.info("等待时间超过,consumer_timeout_ms,把集合数据插入es")
imprtEsData.set_date(ACTIONS)
ACTIONS = []
self.consumer.commit_offsets()
def disConnect(self):
self.consumer.close()
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
class ImportEsData:
logging.config.fileConfig("logging.conf")
logger = logging.getLogger("msg")
def __init__(self,hosts,index,type):
self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000)
self.index = index
self.type = type
def set_date(self,data):
# 批量处理
success = bulk(self.es, data, index=self.index, raise_on_error=True)
self.logger.info(success)
3、运行
if __name__ == '__main__': kp = KafkaPython() kp.getConnect() kp.beginConsumer() # kp.disConnect()
注:简单的写了一个从kafka中读取数据到一个list里,当数据达到一个阈值时,在批量插入到 es的插件
现在还在批量的压测中。。。
以上这篇python消费kafka数据批量插入到es的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
python,kafka,es
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python消费kafka数据批量插入到es的方法”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2025年11月11日
2025年11月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]