1、es的批量插入

这是为了方便后期配置的更改,把配置信息放在logging.conf中

用elasticsearch来实现批量操作,先安装依赖包,sudo pip install Elasticsearch2

from elasticsearch import Elasticsearch 
class ImportEsData:

  logging.config.fileConfig("logging.conf")
  logger = logging.getLogger("msg")

  def __init__(self,hosts,index,type):
    self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000)
    self.index = index
    self.type = type


  def set_date(self,data): 
    # 批量处理 
    # es.index(index="test-index",doc_type="test-type",id=42,body={"any":"data","timestamp":datetime.now()})
    self.es.index(index=self.index,doc_type=self.index,body=data)

2、使用pykafka消费kafka

1.因为kafka是0.8,pykafka不支持zk,只能用get_simple_consumer来实现

2.为了实现多个应用同时消费而且不重消费,所以一个应用消费一个partition

3. 为是确保消费数据量在不满足10000这个批量值,能在一个时间范围内插入到es中,这里设置consumer_timeout_ms一个超时等待时间,退出等待消费阻塞。

4.退出等待消费阻塞后导致无法再消费数据,因此在获取self.consumer 的外层加入了while True 一个死循环

#!/usr/bin/python
# -*- coding: UTF-8 -*-
from pykafka import KafkaClient
import logging
import logging.config
from ConfigUtil import ConfigUtil
import datetime


class KafkaPython:
  logging.config.fileConfig("logging.conf")
  logger = logging.getLogger("msg")
  logger_data = logging.getLogger("data")

  def __init__(self):
    self.server = ConfigUtil().get("kafka","kafka_server")
    self.topic = ConfigUtil().get("kafka","topic")
    self.group = ConfigUtil().get("kafka","group")
    self.partition_id = int(ConfigUtil().get("kafka","partition"))
    self.consumer_timeout_ms = int(ConfigUtil().get("kafka","consumer_timeout_ms"))
    self.consumer = None
    self.hosts = ConfigUtil().get("es","hosts")
    self.index_name = ConfigUtil().get("es","index_name")
    self.type_name = ConfigUtil().get("es","type_name")


  def getConnect(self):
    client = KafkaClient(self.server)
    topic = client.topics[self.topic]
    p = topic.partitions
    ps={p.get(self.partition_id)}

    self.consumer = topic.get_simple_consumer(
      consumer_group=self.group,
      auto_commit_enable=True,
      consumer_timeout_ms=self.consumer_timeout_ms,
      # num_consumer_fetchers=1,
      # consumer_id='test1',
      partitions=ps
      )
    self.starttime = datetime.datetime.now()


  def beginConsumer(self):
    print("beginConsumer kafka-python")
    imprtEsData = ImportEsData(self.hosts,self.index_name,self.type_name)
    #创建ACTIONS 
    count = 0
    ACTIONS = [] 

    while True:
      endtime = datetime.datetime.now()
      print (endtime - self.starttime).seconds
      for message in self.consumer:
        if message is not None:
          try:
            count = count + 1
            # print(str(message.partition.id)+","+str(message.offset)+","+str(count))
            # self.logger.info(str(message.partition.id)+","+str(message.offset)+","+str(count))
            action = { 
              "_index": self.index_name, 
              "_type": self.type_name, 
              "_source": message.value
            }
            ACTIONS.append(action)
            if len(ACTIONS) >= 10000:
              imprtEsData.set_date(ACTIONS)
              ACTIONS = []
              self.consumer.commit_offsets()
              endtime = datetime.datetime.now()
              print (endtime - self.starttime).seconds
              #break
          except (Exception) as e:
            # self.consumer.commit_offsets()
            print(e)
            self.logger.error(e)
            self.logger.error(str(message.partition.id)+","+str(message.offset)+","+message.value+"\n")
            # self.logger_data.error(message.value+"\n")
          # self.consumer.commit_offsets()


      if len(ACTIONS) > 0:
        self.logger.info("等待时间超过,consumer_timeout_ms,把集合数据插入es")
        imprtEsData.set_date(ACTIONS)
        ACTIONS = []
        self.consumer.commit_offsets()




  def disConnect(self):
    self.consumer.close()


from elasticsearch import Elasticsearch 
from elasticsearch.helpers import bulk
class ImportEsData:

  logging.config.fileConfig("logging.conf")
  logger = logging.getLogger("msg")

  def __init__(self,hosts,index,type):
    self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000)
    self.index = index
    self.type = type


  def set_date(self,data): 
    # 批量处理 
    success = bulk(self.es, data, index=self.index, raise_on_error=True) 
    self.logger.info(success) 

3、运行

if __name__ == '__main__':
  kp = KafkaPython()
  kp.getConnect()
  kp.beginConsumer()
  # kp.disConnect()

注:简单的写了一个从kafka中读取数据到一个list里,当数据达到一个阈值时,在批量插入到 es的插件

现在还在批量的压测中。。。

以上这篇python消费kafka数据批量插入到es的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,kafka,es

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“python消费kafka数据批量插入到es的方法”

暂无“python消费kafka数据批量插入到es的方法”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。